SEMESTER I 2024/2025 ## SECI1013 Discrete Structure I # **Assignment 1.2** | NAME | Matric No. | Signature | |------------------------------------|------------|-----------| | 1.AMAN SUFIAN SHAH BIN SHAMSUDDIN | A24CS0046 | | | 2. KALAITHARAN A/L PALANYVELU | A24CS0091 | | | 3.AHMAD IRFAN BIN AZAHAN | A24CS0036 | | | Name of Lecturer | SECTION | | | Dr Noorfa Haszlinna Binti Mustaffa | 02 | | Date of submission: 18th November 2024 ``` Question 1 A = {3,6,0,12} B= 1 2,3,4,5,63 (D) \Rightarrow a-b is an <u>even</u> integer, a \in A, a \in B Test pairs: a-b=even q = 3, 3-2=1 (odd) pairs for 0 = 3 : (3,3), (3,5). 3-3=0 (even) 3-4=-1 (odd) 3-5=-2 (even) 3-6=-3 \text{ (odd)} a=6, pairs for a=6: 6-2 = 4 \text{ (even)} (6,2), (6,4), (6,6) 6-3=3 \text{ (odd)} 6-4=2 (even) 6-5=((odd) 6-6=0 (even) a=9, pairs for a=9: 9-2=7(odd) (9,3), (9,5) 9 - 3 = 6 (even) 9-4=5 (odd) 9-5=4 (even) 9-6=3 (odd) a=12, pairs for a= 12,: (2-2=10 (even) (12,2), (12,4), (12,6) 12-3=9 \text{ (odd)} 12 - 4 = 8 (even) 12-5=7 (odd) 12-6=6 (even) R = \int_{0}^{(3,3)} (3,5), (6,2), (6,4), (6,6), (9,3), (9,5) (12,2), (12,4), (12,6)]. ``` (iii) Domain = $$63,6,9,129$$ Range = $62,3,4,5,63$ ## Question 2 Determine whether the relation on set $D=\{1,3,8,10,15\}$ is equivalent relations when x,y $\in D_3 \times \mathbb{R}$ it and only it y-x is a multiple of \exists (including) negative) Answers D= { 1,3, 9,10,15} xy Eb , xky it and only it you is a multiple 7 Circleding negative) possible element at set R: y-x = 1-8 = -7 (multiple 7) (%1) y-x = 15-8 = 7 (multiple 7) (8,15) y->L = 3-10 = -7 (multiple 7) (10,3) y->L = 10-3 = 1 C multiple 7) Threetore elenchis of R (3710) 4-2=5-1=7 (multiple 7) 4-2=3-3-0 Cmultiple +) (187) y-26 = 16-1 = 14 (multiple 7) 4-2-8-8=0 (multiple 7) y-2=1-15=-11 (multiple}) €8,8) E13,1) 4-2 =10-10=0 y-22 = 8-15 =7 cmultiple 7) (multiple 7) (10.0) (16,8) 4-2:16-15-0 y-2 = 1-1 = 0 (multiple 7) cmultiple 1) CILID (15.15) (81) (810) (1010) (1013) (1010 - Bossed on elements R, Ris Fettersive because every (12,14) ER, (4,2x) FR - Bossed on elements R, Ris Fettersive because element R has (2,24) ER, 2=4 which is (1,1), (3,3), (8,8), (15,15). - boldier Ris **CS** Scanned with CamScanner #### Question 3 3. Given the diagraph of relation R as in Figure 1. i) What is matric of the relation, Ma that represent diagraph in Figure 1 (i) list in degress and out-degress of all vertices 5 (in degrees) = 1 + (in -degrees) = 2 2 contigedies) = 3 (Cindeques) = 3 4 (out-degrees)=2 (11) Is it the relation of & is an partial order? Check all vonance . Justity for answers. - Characteristic or partial order relation is lettersize , antisymmetric and harsitive - from the matrix of relation 12,000 know that R is not rottexive because How is no cuiu) in R - We also know Ris not antisymmotic bronuse there is (Siu), (U, S) ER - lastly up determine is not diangitive as below : Therefore , Idation a is not partial order ### Question U U. Let X = (-2,0,2) and Y=(-4,0,4). For each x EX, define function V: X -> Y and W: X-> Y by: VCN = 4-70 MCOUT DI Determine if I and we are to - one santo Y, and/or bijection Answer For function V · For function W 1 V(x) = 4-x2 MENS = DX 0 : (C-)- +; CC-DV c-=x modes mcs) = 2(2) = 4 When x=0 V.CO) = 4-(0) =4 (0) = (0) = (0) Mun x= > 1 (2) = A-(2),=0 MC-22 = 3(-3)=+ Conclusion of V tunction: - -V tunction is not one-to-one tunction because UC2) and UC2) is oqual to 0 - * V function is not onto I because V function do not occur all elements - = Therefore V function is not bijection function conclusion of - w tuction is one-to-one tunction because they all have Unique Value tion Plements X to - W function is onto Y because its coverall dement of Y - Therefore au function is bijection tunction Scanned with CamScanner Queetion 5 $$f(x) = \pm x - 2$$ $$g(x) = \frac{2}{3}x$$ (i) inverse of $g(x)$ $$g(x) = \frac{2}{3}x$$ let $y = g(x)$ $$y = \frac{2}{3}x$$ $$3y = 2x$$ $$\frac{3}{2} = x$$ $$g'(x) = \frac{3}{2}x$$ (ii) $$(g \circ g \circ f)(x)$$ $$g(g(f(x))) \qquad g(x) = \frac{7}{3}x$$ $$g(f(x)) = g(f(x))$$ $$= \frac{2}{3}(f(x))$$ $$= \frac{14}{3}x - \frac{4}{3}$$ $$g(g(f(x))) = g(\frac{14}{3}x - \frac{4}{3})$$ $$= \frac{2}{3}(\frac{14}{3}x - \frac{4}{3})$$ $$= \frac{28}{9}x - \frac{8}{9}$$ $$\therefore g \circ g \circ f(x) = \frac{28}{9}x - \frac{8}{9}$$ 6(1) Initial T for chamical A 15 fo which is 5.0 Initial Tfor chamical B is fi which is 4.5 & & T for chemical C F= F=++ 0.2(P=-), +=2, F== 6.0, F=4.5 from the reculience of chemical C sue can substitute the value of the figure of the security o Fo = 5.5 39.78 F3 = 5.5 + 0.2 C4.5) F4 = 6.4 0.3 C5.8) 7.5 F6 = 7.5 + 6.4 C0.2) 1 chum 5 leturn 5 ``` Question 7 Write a recursive algorithm to find the n term of the sequence defined Wo=5, Wi=7 and Wn=) Wn-1 + Wn-2 for n=2. Trace the algorithm for n=4. Anguer focursive algorithm: Wins { it (n:0) leturn 5 da it (not) leturn 7 return 2 WCN-1) + WCh-2) Trace the output for n=U (Mca) wap = ba 1=4 because nifl and nfO 1 (42) 1 MCD & letrin 7(12) + 10 WED = 45 (1C3) n=3 because n $1 and n $0 jelun 20117 leturn 26000 + WEID PI=CC3W (hcs) because n#1 anin 10. 1eturn 2(7) +5 return 2W(1) + W(0) (ben) =7 (IXI) h=1 because nel return 7 www return 7 w(0)=5 n=0 Based on tracing algorithm, CS Peggs nee CamScan w(2)= 19,w(3) =45 , w(4) =109 ```